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frequently used for assessing the absolute fit of probability models.
Researchers are often interested in comparing fits provided by
different models which may have a subsuming or non-subsumlng
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full, model. A non-subsumxng relation exists when the defining
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provided by each of:-the component models is described. A detailed .
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outlined. Applxcatxons of the suggested procedure are considered for "’
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State Mastery model are compared as to relative preference when data

are generated from each .model. (DWH) ;
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. S ABSTRACT . - -

&,

*

) :
{ . A "mixture" probability modey which incorpordtes two psycho-
J’metric‘mode1s from separate parametric families is introduced and the

application of this model in selecting a preferred component model 2

¥ is described. Example éﬁp1ications of the suggested procedure are
L. '
considered for the special case in which the Rasch latent trait model
P
and the Latent State Mastery model are compared as to their relative

-

preference when data are generated from each of these models. 5
: & .




Introduction

d

‘Within the realm of probab111st1c modeling, researchers are

frequently 1nterested in. ascerta1n1ng how we]] 1nvest1gated mode]s

account for manifest data. Two fnequently used statistics for -

assessing the absolute fit ot probability models are the

- Pearson and the!1ike1{hood°ratio statistics. These statistics are

defjnei/respective1y in equat?gns (1) and (2). R
n 2
r (0 - E) ,
2 i i
S S S | (1)
i=1 T
L] 1 rd E
i
‘f £
and l Y
2 . n E,
. X =-21fo0 i * \ (2).
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0y,
where . ‘ . .
.o " 0, ='obseryed %requency for the ith response category,

1

! Ei = expected frequency for the 1th response category, and

n. = number of response categories.

Both of these statistics are asymptotically distributed as chi-
square (given nek+1) with: degrees of freedqm/L -

dfr =n,. - k =1 : (3)

where k iszthe number of independent parameters defining the model in

’

question.

Note that the observed and expected frequenc1es on which these

!

stat1st1cs are based may correspond to either “total scores” or item
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} ; "resp;nsé'patterns." The prefg}abi]ity ofﬁtheseviwo~F1asses of
response catggories will depend‘on such factors as number! of re-
E . spo%dents, N,;number of items, m, aﬁd nuéber of parametérs, k, to
be esf?ﬁated, )

In"addition to assessing-the absolute fit of models to data, re-

searchers are frequently infe"eéged in comparing the fits provided by

"different models. When comp;rigbns between béirs of models are of
? . d . 7 }
intere;ﬁ, two situations may arise: (1) the models have a subsuming

o

re]at%on, or (2) the models have a.non:subSuﬁigg,rela;ion;

}
i
t A subsuming relation exists between tfo models when the pgrametefs”
of one model (the reduced model) form a subset of those contained in the
‘second more complex model (theggybsuming 6r full model). When models >
have'a subsuming relation, it i§ possible to assess relative fit ofy
_the reduced model to the, full model (i.e., to deterﬁfné whether -the
reduced mo&e] fits as we%1/as the full modei). This may bi qgcomp]ished
’_ by using the difference in“the 1ikelihood ratio statistics defined in
- (2) for the full (I) and the reduced (II) models,
L - < | |
2 2 2 , : 4 s
' Xn *  XRezz) - *Lr(D) . (4)

%

, 2 T - .
The difference statistic, %o , is asymptotically distributed
as chi-square (given that the full modél ho]&s) with degrees of freedom
’ ¢fp = kp = Ky (5)
where kI and kn‘are respectivq}y the number of inuependent parameters

in models I and II,




 Two models have'a non-subsuming re1ation when the de;ining -
parameters in neither mode] fonn azsubset of those def1n1ng the other .
model. A problem arlses 1f a researcher is 1nterested in compar1ng
two models that have a[non-subsum1ng relation, since the ‘difference

”
statistic defined in (4) is not d1str1buted as ch1-square. Thus, al-

. two models with respect to fit. »

probability model which incorporates two non-subsuming probability

ternative procedures are - e -needed for assess1ng the relative adequacy of .

The probfem of comparing non-subsuming modeis falls within the

context of d1scr1m1nat1ng between models from separate families. A

———

theory of hypotheSTs test1ng for separate families has been deve]oped
by Gox (1961, 1962) and extended by Atkinson (1970);whose genera]

approach we follow. .

The purpose of this paper is to introduce a general "mixture"

pnde]s and to present a strategy'for assessing fit provided by each of

3

the component models.

The Mixture Model

Fhe general model, M ’ presented in this paper 1ncorporates two

a]ternat1ve non-subsumlng models (I and II) as weighted components of

the full model. Under the Mixture model, the probability of the occurrence

of the ifh response category is defined as

V;

\
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In this equation, 9 and Q respectively represent probabi1ities for

¥
the i th response category under the non-subsum1ng mod°1s I and II

PN represents a "m1xture" parameter ‘which designates the re1at1ve‘

contribution which each component model makes to the probability, Yi .

Notice that when\ is set at zero or one, the full model reduces to
\

model 1 .or medel II respegtively.
. :
Estimation and Fit of the Mixture Model

' To'obtain'meximum likelihood estimates of the parameters‘whiEh
define the component 1atent structure models, iterative methods such
as the Newton-Raphson procedure (see Bock and L1eberman 1970) or the
iterative proportional. fitting method(see Clogg, 1977) are frequent]y
employed., Similarly, 2 conditional maximum 11ke11hood est1mate of )\
may also be obtained through the .use of iterative procedures (see Conte

\ > .

and deBoor, 1972) . &

| A test for the ;bso1ute fit of the M1xture model, M y» can be per-
formed by means of 2 1?ke11hood ratio statistic, k_Lgt, as defined in
(2), where E1 = N‘Pi.4lThis statistic is distributed asymptotically as

chi-square with degrees of freddom equal to n. - ky = kyy - 2 (given

that estimates of the parameters defining \Vi are {ndependent).

Strategy for Assessing Fit -

”
In this section a stagewise strategy for selecting a preferred

model is presented. Under this strategy it is possible to reach any

one of the following conclusions related to model preference based on

fits v

7




(?) mode] I provides acceptable fit, and is preferred,
(b) model 1I provides acceptable fit, and'is'preferred,
(c) both models prov1de acceptable f1t, but neither is preferred, OF
fd) both models provide unacceptable f1t. F -

A detailed description of the strategy for selecting a preferred .. |~

mode] follows, with the flow diagram in Figure 1 reflecting this strategy.

1., Assess the absolute fit of the Mixture model, M, by means of tho'3CLg

II.

I11.

statistic in equation (2). . ,

A, If absolute fit is obtained, go to Il. e

B? if abso]ute fit is not obtained, STOP. Cobc]gde that npitber
Model 1 nor Model 11 (separate]y or combined) are acceptable

for describing the data.
|

- (From 1. R) Assess the relative fit of Model i and Model 1I to the

"Mixture model by means of the difference ch1-square, 5Lp, as def1ned

~

in (4). )

A. If both Model I and Model II proyide acceptable fit, go to 1.

B, If on1y Model I provides acceptable relative fit, go to IV. '

c. If on]y Model I provides acceptable: relative f1t, go to V.

D. Ifjneither Mode] I°nor Modml 11 provide acceptab]e relative f1t,
STOP. Conc]ude that neither Model I nor Modo] 11 are adequate
to account, for the data. ' -

(From I11.A) Assess Model I and Mode1 II with respect to tbeir

absolute fits with-equation- {2). - - -, . B

A. If only Modeﬁ 11 provides acceptable fit, STOP., Select
) N

Model II.
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'p. ¥ on]y Model 1 prov1des acceptab]e f1t, STOP. Select Mode] 1;

C.. I, both Model T and Nodel I1 provide acceptable fit, STOP... k -
Conclude that both Model I fand Model II-aré acceptabTe mode]s
but neither is “preferred“ over the other model.
D. If neither model prov1des acceptable absolute -fit, STOP.
Conclude that neither model is acceptable. .
IV, (From I1. B) Assess the absolute fit of Model 11 W1th equat1on (2).
KA. 1f absolute fit is obtained, STOP. Select Model 11,

~

B. If absolute fit.is not obtained, STQP. Conclude that neither~
mode1 is acceptable. | h .
V. (From I1.C) /Assess the atsolute fit of Model I with equation (2).
A. If absolute fit is obtained, STOP. Select Model I.
B. If absolute fit is not obtained, STOP. Conclude that néither

' mode] is acceptable. ) .oy

u

[ “ Example Applications

In the area of mastery assessment two classes of latent structure
models have been proposed. These hayé been ta]fed Contiﬁuum models and
State models (see Meskauskas, 1976). For Continuum mode]sd trait SRR
acqu1s1t1on 1s assumed to be gradual and mastery js viewed as an 1nterva1
on ; continuum while for State models, trait acqu1s1t1on is conceived as\ .
an “all-or-none" process and ‘mastery is v1eng as the presence of trait
acqu1s1t1on. Two modéfs‘which fan respecti@e]y within the Continuum
and State model classes (and which do not have a subsuming relation) are © .

L

thelRasch model (Wright and Stone, 1979) and thé Latent State Mastery

: | 11
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(LSM) model (Nacready and Dayton; 1977). This section of the paper '

is. devoted to the app11cat1on of the propdsed strategy W1th simulated
,data, for se]ect‘on between the Rasch and 'LSM models.

For both the Rasch and LM moder, the probability of the

.th

occurrence. of the 1 response pattern may be de§1gnated as the product

of 1tem response probab111t1es (assum1ng 1oca1 1ndep°ncence)
124 :

,v<u>-! K (1-p> i o
: T, = o
where -u. = the'fth response pattern ) . 0 :
‘\
| m = the number of d1choeomous1y scored11tems, and .
. 7 when a correct response is en%gUntered _
h_.=) for the gth item/within the i*N response pattern e
gi - T, L |

Y

'(0 otherwise .

For the Rasch model, ;ne probability of a correct response to_item

g over all persons is

. N [— : )
2 expla (x, -5
TN 30 L
8 W L 3 . (8)°
. .=t 1+ exp Ia (:;j - bg‘}] o
where ' » o
examinee, o

j = the latent ability of the j ,
g = difficulty of the gth item,. énd ' : . )

2 . = common discrimination factor for all items.

3

Correspondingly, for the LSM model, the probability, Pgr is
~ defined as p A o .
= Y )+ . (1 - 3 ‘ . .
Pq (Pg.M) (a) (Pg.ﬁ)‘ (1 A). * (9)

! . .
{ > » ‘
- . .
N . N

12
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where
Pg M- = the conditional probabi]ity that a master (M) answers
____ﬂ_#_“-_ntemgg correct]yn*»~~f»uwMA~w~——~—~— e e e
g = the conditional probability that a non-master (F) :

answers item g correct]y, and

“ A = the latent proportion o’ﬁ\\masters (thus, 1 -4 1is
the latent proportion qf\hpn-masters).

In equation (6), P(u;) is represented as-aT-for.thé Rasch model and

. for the LM model. . o~

- . ‘ Data Generation

Twi¥ sets of simulated data were considered in this paper. The -
s
first set of data was based onthe Rasch model for a sample of N = 100

s1mu1ated subaects respond1ng tom= 5 1tems. The_ 1tem difficulties - - - -

——-used “in” generat1dn were>hn1form1y d*str1buted (-.9, -.45, 0.0, .45, .9)

e

and the discrimination factor (3) was set‘equaI to .85. The latent
trait. xj, Qas randomly generated from a normal popu]ation with a ﬁean
of 0.0-and standard deviation of 1.0. s
‘e The second set of fimulated dapa‘was based on the LSM model, here
also with a sample of N=100 simulated subjects responding to m = 5 items.
Under this model, the five conditional probabilities for positive item .
.responses from non-mas?erf, Eg.FP were set at .99, .98, .97, .96, and .95.
Y : For eath”ségﬁof simulated data, maximum likelihood estimates of the
parameters dg;ining each model were independently estimated through the

use of separate programs employing Newton-Raphson algorithms (see Wright,
t

Mead, and'Be1i, 1979; and Dayten and Macready, 1976). Conditional upon
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these estimates, a maximum 1ikelihood estimate of A was obtained using

the method of bisection (Conte and deBoor, 1972). 1In addition, models

|
P(X%)s. 05. o , | :

£

The results related to the data generated from the Rasch model are

were judéed‘ﬁ‘is“ﬁFﬁvidTng‘atceptab?e“absoTute’(or‘reTatTve) fit if—7—

presented.in Table 1.’

Table 1

Results for tests of fit based on data
generated from the Rasch model

Assessed Cond1t1on L QLZ df p-value
Absolute fit of M, 22,43 14 .930 g
Relative fit of Rasch 7.17 12 .154
Relative fit of LSM 9,34 6 .845
Absolute fit of Rasch 29.59 - 26 | .715
Absolute fit of LSM 31.76 20 . .954

Following the detailed strategy for selecting a preferred model, the
absolute fit of the Mixture mode]. M » was first assessed {at Stage 1),
Since the obsejved 5LLQ for the Mixture mode] suggested adequate fit, -
the relative fits for both the ‘Rasch and LSM models to the mixture model
were considered (at Stage II) Because each of these models provided
acceptab]e relative fit to the M1xture model, they were then assessed vith
respect to their absolute fit (at Stage III). Only the sngfor the

. Rasch model failed to éxceed the .05 critical value. Hence, the Rasch

B

model was selected as the preferred model.
Correspondihg results for the data set that was generated -from the

LSM model are presented in Table 2.

-

v 14

-

-
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Table 2
Resu]tsjfon_testsqof_fjtubasgg_gnﬂdéig I R

generated from_the LSM:mode¥:

Assessed Condition sk? df p-value
Absolute fit of M, s 1718 4 . .754

Relative fit of Rasch 22.03 12 L963

Relative fit of LSM 1.4, 6 .035

Absolute fit of Rasch 39,22 26 - .954 .

" Absolute fit of LSM 1861 20 453 -

. As in the previous example, the Mixture model pfovided acceptable
absolute fit (at Stage I). Thus, (at Stage: II) both the Rasch and LSM
modeils were assessed with respgctvto their relative fits to the Mikture
model. Here, orily the LSM modgi provided accéptable relative fit. For
this réason only the LSM model was assessed with respect t& jts absolute

fit (at Stage IV) which was obtained. Consequgnt]},,the LSM model was

-selected as the preferrea model.

2 )
”_zﬂfgggbfgf;;hgﬂgxgﬁ;lgs?COnsidened-j¢-mayube-seen that the decision

strategy led to the selection of’the generating model.
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